Designed experiments with replicates: Principal components or Canonical Variates?

Published at November 2, 2023 ·  16 min read

A few days ago, a colleague of mine wanted to hear my opinion about what multivariate method would be the best for a randomised field experiment with replicates. We had a nice discussion and I thought that such a case-study might be generally interesting for the agricultural sciences; thus, I decided to take my Apple Mac-Book PRO, sit down, relax and write a new post on this matter. My colleague’s research study was similar to this one: a randomised block field experiment (three replicates) with 16 durum wheat genotypes, which was repeated in four years....

Biplots are everywhere: where do they come from?

Published at November 24, 2021 ·  25 min read

Principal Component Analysis (PCA) is perhaps the most widespread multivariate technique in biology and it is used to summarise the results of experiments in a wide range of disciplines, from agronomy to botany, from entomology to plant pathology. Whenever possible, the results are presented by way of a biplot, an ubiquitous type of graph with a formidable descriptive value. Indeed, carefully drawn biplots can be used to represent, altogether, the experimental subjects, the experimental variables and their reciprocal relationships (distances and correlations)....

Principal Component Analysis: a brief intro for biologists

Published at November 23, 2021 ·  24 min read

In this post I am revisiting the concept of Principal Component Analysis (PCA). You might say that there is no need for that, as the Internet is full with posts relating to such a rather old technique. However, I feel that, in those posts, the theoretical aspects are either too deeply rooted in maths or they are skipped altogether, so that the main emphasis is on interpreting the output of an R function....