#nlme

Accounting for the experimental design in linear/nonlinear regression analyses

Published at December 4, 2020 ·  11 min read

In this post, I am going to talk about an issue that is often overlooked by agronomists and biologists. The point is that field experiments are very often laid down in blocks, using split-plot designs, strip-plot designs or other types of designs with grouping factors (blocks, main-plots, sub-plots). We know that these grouping factors should be appropriately accounted for in data analyses: ‘analyze them as you have randomized them’ is a common saying attributed to Ronald Fisher....


Fitting 'complex' mixed models with 'nlme': Example #4

Published at September 13, 2019 ·  11 min read

Testing for interactions in nonlinear regression Factorial experiments are very common in agriculture and they are usually laid down to test for the significance of interactions between experimental factors. For example, genotype assessments may be performed at two different nitrogen fertilisation levels (e.g. high and low) to understand whether the ranking of genotypes depends on nutrient availability. For those of you who are not very much into agriculture, I will only say that such an assessment is relevant, because we need to know whether we can recommend the same genotypes, e....