#Repeated_measures

Repeated measures and subsampling with perennial crops

Published at December 4, 2023 ·  5 min read

In a recent post, I have talked about repeated measures, for a case where measurements were taken repeatedly in the same plots across years see here. Previously, in another post, I had talked about subsampling, for a case where several random samples were taken from the same plot see here.

Repeated measures and subsampling are vastly different: in the first case I am specifically interested in the ‘evolution’ of the response over time (or space, sometimes). In the second case (subsampling), I only want to improve the precision/accuracy of my measurements, by taking multiple random samples in each plot.

...


Repeated measures with perennial crops

Published at March 30, 2023 ·  8 min read

In this post, I want to discuss a concept that is often mistaken by some of my collegues. With all crops, we are used to repeating experiments across years to obtain multi-year data; the structure of the resulting dataset is always the same and it is exemplified in the box below, that refers to a multi-year genotype experiment with winter wheat.

rm(list = ls())
library(tidyverse)
library(nlme)
library(emmeans)
filePath <- "https://www.casaonofri.it/_datasets/WinterWheat.csv"
dataset <- read.csv(filePath)
dataset <- dataset %>%
  mutate(across(c(1:3, 5), .fns = factor))
head(dataset)
##   Plot Block Genotype Yield Year
## 1    2     1 COLOSSEO  6.73 1996
## 2  110     2 COLOSSEO  6.96 1996
## 3  181     3 COLOSSEO  5.35 1996
## 4    2     1 COLOSSEO  6.26 1997
## 5  110     2 COLOSSEO  7.01 1997
## 6  181     3 COLOSSEO  6.11 1997

We can see that we have a column for the blocks, a column for the experimental factor (the genotype, in this instance), a column for the year and a column for the response variable (the yield, in this instance).

...